In - Situ Electron Microscopy Studies of the Effect of Solute Segregation on Grain Boundary Anisotropy and Mobility in an Al - Zr Alloy

نویسندگان

  • Mitra L. Taheri
  • Eric Stach
  • Velimir Radmilovic
  • Hasso Weiland
  • Anthony D. Rollett
چکیده

The presence of impurities in aluminum alloys is of great interest with respect to microstructural properties, specifically, the effect of solute on texture and anisotropy. This paper presents new evidence of the pronounced effect of solute drag based on in-situ annealing and Electron Backscatter Diffraction experiments of Zr-rich Al alloys subject to prior strain. A compensation effect was found for grain boundary mobility maxima for specific boundary types. Trends in activation energy as a function of boundary type support the observations of a compensation effect with respect to temperature. Evidence for irregular motion of boundaries from in-situ observations is discussed in reference to new theoretical results that suggest that boundaries migrating in the presence of solutes should move sporadically provided that the length scale at which observations are made is small enough. A study of both boundary motion and solute segregation to specific boundary types using Scanning Transmission Electron Microscopy and in-situ TEM is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for Solute Drag during Recrystallization of Aluminum Alloys

Evidence of both solute drag as well as differences in migration mechanisms of certain boundary types has been found for an Al-Zr alloy. In-situ Transmission Electron Microscopy (TEM) annealing experiments coupled with Scanning Transmission Electron Microscopy (STEM) showed a stark contrast between Zr segregation at small and large scales. Specifically, Zr was found to segregate to, as well as ...

متن کامل

Microstructure and Grain Refining Performance of a New Al-Ti-C Master Alloy (RESEARCH NOTE)

Control of microstructure parameters that affecting the Al-Ti-C master alloys grain refining efficiency is leading to improve the aluminum grain refinement. This study was an attempt to produce Al-Ti-C master alloys that provide these controlling factors with relying on the solute effect theory. The produced master alloys were examined by using scanning electron microscopy (SEM), energy-dispers...

متن کامل

In-Situ Investigation of Grain Boundary Mobility and Character in Aluminum Alloys in the Presence of a Stored Energy Driving Force

This paper investigates the effect of solute (namely Zr, Fe and Si) in Al alloys on grain boundary character and mobility based on experiments in which individual boundaries migrate under a stored energy driving pressure acquired from prior plastic strain. A compensation effect is noted both alloys studied with respect to both temperature and solute content. As supported by the literature, boun...

متن کامل

EFFECT OF COOLING RATE AND GRAIN REFINEMENT ON THE MICROSEGREGATION IN Al-4.8 wt.% Cu ALLOY

 Microsegregation is one of the most important phenomena occurs during solidification. It usually results in formation of some unexpected second phases which generally affect the mechanical properties and specially reduce the workability of casting products. The aim of this research is to study the effect of cooling rate and grain refinement on the microsegregation in Al-4.8 wt.% Cu. For this p...

متن کامل

The effect of temperature and strain rate on elongation to failure in nanostructured Al-0.2wt% Zr alloy fabricated by ARB process

A nano/ultra-fine grain Al-0.2wt% Zr alloy was produced by accumulated roll bonding (ARB) processafter 10 cycles. The fraction of high angle grain boundaries increased from 8% to 65.4% during 10passes during ARB process. This alloy was subjected to tensile test at different temperatures (523,573and 623 K) and strain rates (0.1 and 0.01 s-1). The optimum condition of temperature and strain rate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005